A simple Encoding Scheme to Achieve the Capacity of Half-Duplex Relay Channel

Zouhair Al-qudah, Khalid Ahmad Darabkh

A simple Encoding Scheme to Achieve the Capacity of Half-Duplex Relay Channel

Číslo: 1/2022
Periodikum: Advances in Electrical and Electronic Engineering
DOI: 10.15598/aeee.v20i1.4347

Klíčová slova: Broadcast channel; channel capacity; half-fuplex; multiple access channel; relay channel.

Pro získání musíte mít účet v Citace PRO.

Přečíst po přihlášení

Anotace: In this paper, the Half-Duplex Relay Channel (HDRC) is thoroughly investigated. Even though this channel model is widely studied, the capacity is not yet fully understood and particularly has not been tightly expressed. In this work, a new capacity expression of the discrete memoryless HDRC is explicitly established. In particular, a new expression of the achievable rate is derived by taking advantage of the well-known capacity results of both the degraded broadcast channel and the multiple access channel. Specifically, in order to obtain the achievable rate, the transmission from the source to destination is operated over two phases. In the first phase, the broadcast phase, the source broadcasts to both relay and destination. In the second phase, both source and relay transmit to destination to form multiple access channel. Then, we prove that the new achievable rate meets the cut-set outer bound such that the capacity of the discrete memoryless HDRC is attained. Next, the new derived capacity result is extended to the case of additive Gaussian channel. Further, the attained capacity is analytically and then numerically shown to encompass all well-known available findings in the literature. Additional numerical examples are also shown to present the cases in which the relay is beneficial and how the achievable capacity varies with the source-relay and relay-destination channel gains.