Tibia mineralization of chickens determined to meat production using a microbial phytase

Mária Angelovičová, Martin Mellen, Peter Zajác, Jozef Čapla, Marek Angelovič

Tibia mineralization of chickens determined to meat production using a microbial phytase

Číslo: 1/2018
Periodikum: Potravinárstvo
DOI: 10.5219/805

Klíčová slova: broiler; microbial phytase; additive; phosphorus; tibia; mineralization

Pro získání musíte mít účet v Citace PRO.

Přečíst po přihlášení

Anotace: The target of the research was 6-phytase of microbial origin. It was used in feed mixtures for chickens determined to meat production. Its effect has been studied in relation to the tibia mineralization by calcium, phosphorus and magnesium. 6-phytase is a product of Aspergillus oryzae. That was obtained by means of biotechnological processes of production of commercially available enzymes. It was incorporated in the feed mixtures 0.1%. In a 38-day feeding trial, 300 one-day-old, as hatched, Cobb 500 chickens determined to meat production (100 birds per group) were fed on one concentrations of dietary non-phytate phosphorus (2.32, 2.31 g.kg-1, respectively and supplemental microbial phytase (0 and 500 FTU.kg-1 feed mixtures). Control group was used to compare the results and control feed mixtures contained 4.5 g.kg-1 without microbial phytase. At days 40 it was selected 6 birds in every group, which were slaughter in accordance with the principles of welfare. Left tibias of every bird were used to determination of calcium, phosphorus and magnesium contents. According to in vivo, it was found that the addition of microbial phytase to reduced dietary non-phytate phosphorus increased concentrations of calcium (Ca), phosphorus (P) and magnesium (Mg) in tibia. The differences among groups were statistically significant (p <0.05). It was concluded that reducing of dietary non-phytate phosphorus on the 2.32, 2.31 g.kg-1, respectively, by monocalcium phosphate and microbial phytase supplementation in feed mixtures facilitated tibia mineralization at chicken determined to meat production.