Accelerated technology for bread preparation using activated water

Ilyas Sharipkhanuly Akkozha, Auyelbek Iztayev, Bauyrzhan Auyelbekovich Iztayev, Rauan Buribayevna Mukhtarkhanova, Madina Asatullaevna Yakiyayeva

Accelerated technology for bread preparation using activated water

Číslo: 1/2023
Periodikum: Potravinárstvo
DOI: 10.5219/1881

Klíčová slova: bread, particle size, dispersity, wheat, ion-ozoned water

Pro získání musíte mít účet v Citace PRO.

Přečíst po přihlášení

Anotace: In this study we studied the production of bakery products with an accelerated production cycle using different dispersed flour and ion-ozoned water. The dough was prepared by mechanical loosening of compressed air under pressure (1.5-3 atm). The accelerated technology of bread production combined with wholemeal flour increases the independence of the bakery and reduces the production time of the finished product. The air bubbles in the cavitation process create a finer texture and more airy porous products resulting in higher-quality bread with excellent sensory and textural properties. The accelerated method eliminates yeast from the formulation and expands dietary varieties of yeast-free bread and flour confectionery products. This study used new accelerated technology to quickly intensify the colloidal and biochemical processes that occur during dough preparation. The technology made it possible to eliminate the dough fermentation and proofing process, thereby reducing the duration of the production process of bakery products, increasing labour productivity, and increasing the yield of bread. Qualitative, organoleptic, physicochemical and microbiological indicators and safety indicators evaluated the bakery products. The results showed that the quality of fine and ultrafine disperse flours met the recommended standards for baking yeast-free bakery products. According to laser diffraction data, the average particle size of flour obtained by whole grain milling was 194.9 μm (micron) for fine wheat flour, 609.4 μm for fine wheat flour and 830.0 μm for medium wheat flour. The finest flour fractions (less than 75 μm) provide higher gluten quality, resulting in a better balance of elasticity and extensibility in the dough, according to particle size studies of flours used to create bread. Thus, bakers can give their bread the desired texture. The overall quality of the bread is also affected by the flour's protein content, with the 10-11.5% range considered ideal. The addition of sourdough has improved the taste of baked goods. Bread products made from different dispersed flour and ion-ozoned water had good quality, organoleptic, physicochemical and microbiological indicators, and safety indicators. They could be stored for up to 5 days. As a result of using the accelerated method of dough preparation will improve the structural-mechanical, rheological and technological properties of bread, bakery and flour confectionery products.