Molecular analysis of buckwheat using gene specific markers

Želmíra Balážová, Zdenka Gálová, Martin Vivodík, Milan Chňapek, Radomíra Hornyák Gregáňová

Molecular analysis of buckwheat using gene specific markers

Číslo: 1/2018
Periodikum: Potravinárstvo
DOI: 10.5219/954

Klíčová slova: Fagopyrium esculentum; SCoT technique; genetic variability; DNA polymorphism; dendrogram

Pro získání musíte mít účet v Citace PRO.

Přečíst po přihlášení

Anotace: Buckwheat (Fagopyrium esculentum) is a pseudo-cereal which has spread troughout the world and nowadays it represents cultural, economic and nutritionally important pseudocereal. It´s enviromentally friendly, characterized by high fiber, routine, protein and B vitamins, and is general-purpose. The goal of the present study was to analyze 17 genotypes of buckwheat by using 7 SCoT markers. In total, 52 fragments were detected, of which 38 were polymorphic. The average number of polymorphic fragments was 5.43. The most polymorphic fragments were detected in SCoT 26 and SCoT 29 markers, and the average percentage of polymorphism was 73.36 %. SCoT 29 reached the highest percentage of polymorphism (87.5 %) and SCoT 36 was lowest (60 %). The DI values ​​ranged from 0.625 (SCoT 36) to 0.887 (SCoT 26) and the average DI value was 0.749. The average PIC value was 0.729 with PIC values ranging from 0.386 (SCoT 36) to 0.831 (SCoT 26). To determine the genetic diversity of 17 genotypes of the buckwheat, a dendrogram was created using the hierarchical cluster analysis. The genotypes were divided into two major clusters (I and II). Cluster I was divided into three other subgroups. Sixteen genotypes were included in cluster I and the genotype of Madawaska (USA) was genetically the farthest in cluster II. Genetically the closest were the varieties of Ballada (Russia) and Bamby (Austria). Used SCoT markers were sufficiently polymorphic, were able identify and differentiate chosen set of buckwheat genotypes.