Design optimization of moveable moment stabilization system for access crane platforms

Kemal Ermis, Mehmet Caliskan, Muammer Tanriverdi

Design optimization of moveable moment stabilization system for access crane platforms

Číslo: 1/2021
Periodikum: Acta Polytechnica
DOI: 10.14311/AP.2021.61.0219

Klíčová slova: Dynamic analysis, structural analysis, mechanic, aerial work platform

Pro získání musíte mít účet v Citace PRO.

Přečíst po přihlášení

Anotace: The popularity of aerial work platforms is rapidly increasing in the mechanization industry. As a result, the safety and structural strength of aerial work platforms should be prioritized.

In this study, the mathematical model of a reconstructed aerial work platform was developed and a 3D model was created using the Solidworks software. A dynamic analysis was then performed to improve various structural parameters of the aerial work platform. The analysis was carried out using solid modelling, finite elements, and dynamic transient analysis. In compliance with international structural standards, the weight distribution was reconstructed after placing a mass behind the turret.
The results of the dynamic transient analysis were compared with the mathematical model and validated. Then, the effect of the mass placed behind the turret on the machine was examined. The lateral tipping distance of the static work platform was found to have increased from 15.9m to 17.08 m. The structure of the aerial work platform was improved using a structural and dynamic analysis approach. It was also discovered that the machine efficiency could be further increased by ensuring that the balancing weight is moved further away from the tower centre by a hydraulic-based system and controller.